• Home
  • polymerization
  • OpenAccess
    • List of Articles polymerization

      • Open Access Article

        1 - Polymer Networks as Hierarchical Porous Carbon Materials: Synthesize, Properties and Applications
        ziba shirini kordabadi Fatemeh Rafiemanzelat
        Porous materials have different types of pores in the micro, meso or nano range, each of which plays a special role in porous materials application. Among these materials, porous carbon materials have a special share due to their unique properties such as: mechanical, c More
        Porous materials have different types of pores in the micro, meso or nano range, each of which plays a special role in porous materials application. Among these materials, porous carbon materials have a special share due to their unique properties such as: mechanical, chemical and thermal stability and their reasonable price. There are two main methods for synthesizing porous carbon materials: 1) template method and 2) pyrolysis/activation method. The template method is basically time consuming and tedious due to the use of the template and removal of template. Thus the method of pyrolysis/activation is widely used to prepare porous carbon materials from porous polymer precursers or waste and biomass materials in the presence of the physical and chemical active agents. Replacement of heteroatoms including: N, O, B, S and P in carbon materials leads to increased efficiency and development of their new applications; For example, the use of porous N-doped carbon materials as electrodes in superconducting cells increases the efficiency of energy storage and in the field of adsorbents materials increases the efficiency of CO2 uptake. Due to their unique properties, especially high surface area, low weight and high adsorption capacity, porous carbon materials are used in hydrogen storage, contaminants removal fron air air water, electrodes and as catalyst support. Manuscript profile
      • Open Access Article

        2 - Polymer metal-organic framework (PolymerMOF) hybrids and composites synthesis techniques and applications
        Mohsen Sadroddini Amin Alamdari
        Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stabil More
        Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Among the most important novel applications of the polymer/MOF hybrids are gas separation and adsorption, ion exchange membranes and nanofiltration, sensors, catalysts, biomedical, etc. The objective of this article is to investigate the hybridization technique of MOFs and polymers, as well as the attractive applications of these hybrid materials. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are formed through the self-assembly of metal nodes and organic bonds, resulting in a nanoporous crystalline framework. High porosity, high specific surface area, adjustable pore size and good stability are some of their most significant attributes. Hybridization with flexible materials like polymers is an emerging trend in MOF research. Polymers possess distinctive characteristics, including softness, thermal and chemical stability, suitable optical properties, and ease of processing. These properties can be combined with MOFs to produce hybrid structures with intricate architecture and distinctive characteristics. Manuscript profile